OpenGL Cross-platform PC/PSP Game Coursework

Last semester as part of the Advanced Graphics module of my CS degree at Hull University, we were tasked with a group project to produce a cross-platform OpenGL mini-game for the PC and Sony PSP based on a specification. The game premise was to move around a 3D ‘maze’ consisting of four rooms and connecting corridors, avoiding a patrolling AI that would shoot you if within its line of sight. The objective was to collect 3 keys to activate a portal to escape and beat the game.

The groups were selected at complete random with 4 members. As per usual, group coursework assignments are particularly difficult due to the extra concerns of motivating members and assigning work and by year 3 of University, you get a good idea on the best way of operating within them to secure good grades. I went in with the mindset of doing as much work as possible after we assigned tasks. Hopefully each would carry out their allocated work, if not, I’d just go ahead and do it, no fuss. Luckily one chap in my group was a friend and he did an excellent job coding the AI, mini-map and sound while I worked on coding the geometry, camera, lighting and player functionality etc.

1

Mini-maze model

Static environment lighting

Static environment lighting

Cross-Platform Limitations:

Having worked with OpenGL and shaders last year for my 3D ‘The Column‘ project, it was some-what limiting when I realised that the PSP didn’t support them and that fragment-based lighting was a no go. With one requirement of the game being a torchlight effect that illuminated the geometry, this would therefore mean that for PSP compatibility, vertex-based lighting would need to be implemented and that meant tessellation of primitives to prevent the lighting looking very blocky and…well very 90’s. Luckily the PSP did atleast have support for VBO (Vertex Buffer Objects) which meant effectively each tessellated model could loaded onto the graphics card only once to improve performance.

Unified Code

An interesting aspect of this project was the required consideration for a consolidated code-base that where possible allowed shared functionality for both the PC and PSP platforms i.e limiting how much platform specific code was used. This was essential since the game would be a single C++ Solution for both platforms.

I designed the code structure based around principles Darren McKie (the course lecturer) described, and produced the following class diagram that reflects the final structure:

Unified Cross-platform Class Diagram

Unified Cross-platform Class Diagram

The majority of game code resides in ‘Common Code’ classes that are instantiated by each particular platform ‘Game’ object. Certain code such as API rendering calls were kept platform specific but made use of the common classes where necessary. A particular nice way of ensuring the correct platform specific object was instantiated was carried out using ‘#Ifdef’, ‘#ifndef’ preprocessor statements and handled by a ‘ResourceManager’ class.

As mentioned earlier, per-vertex lighting had to be implemented due to PSP compatibility. A primitive with a low number of vertices would thus result in very blocky lighting. To prevent this I created a tessellation function that subdivided each primitives vertices into many more triangles. I played around with the tessellation depth to find how many iterations of subdivision could be achieved before inducing lag and was very happy with the lighting result considering there is no fragment shader; a given for today’s modern pipelined-based rendering.

Active Portal

Active Portal

The PSP implementation proved more tricky due to getting to grips with the PSP SDK and having access to very little documentation, however the game was successfully implemented onto a PSP device and ran with decent performance after compressing the textures down and removing geometry tessellation to allow for the PSP’s limited memory capacity.

The game was written in C++ and  the following libraries and software were used:

  • GXBase OpenGL API
  • Sony PSP SDK
  • OpenAL
  • Visual Studio 2012
  • Paint .Net
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s